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ABSTRACT

We study a natural class of appropriate viscosity matrices for

strictly hyperbolic systems of conservation laws in one space dimension,

ut + f(u)x  0, u e i'. These matrices are admissible in the sense that

small amplitude shock wave solutions of the hyperbolic system are shown to be

limits of smooth traveling wave solutions of the parabolic system

ut + f(u)x - V(Dux) x as V + 0 if 0 is in this class. The class is

determined by a linearized stability requirement: The Cauchy problem for the

equation ut + f'(u 0 )ux = VDuxx should be well posed in L2 uniformly in

V as V + 0. Previous examples of inadmissible viscosity matrices are

accounted for through violation of the stability criterion.
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SIGNIFICANCE AND EXPLANATION

Many equations of mathematical physics take the form of nonlinear

hyperbolic systems of conservation laws. With small dissipative effects

neglected, typically smooth solutions must develop discontinuities (shocks in

finite time. Reincorporating dissipation helps select those discontinuities

which are physically meaningful. For this purpose, many different sorts of

dissipation will dos in particular, the physical viscisity is typically

degenerate and not convenient. In this paper weprovide a thorough

understanding of what sorts of second order viscosity terms smooth the

physical discontinuities. A natural class of ladmissibleo viscosity terms is

determined based on a simple linearized stability condition.
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STABLE VIECO61TY MATRICES FOR SYSThEMS OF COUSERVATIOG LANE

Andrew Najd&*' 1,2 and Robert Pago1,3

11. INTHOOUCTION

The simplest discontinuous solutions of the a x a system of hyperbolic conservation

laws

are the shock wave solutions defined by

% st < at

(1.2) 
u(Xwt) >t

where UL and a. are constant vectors which togother vith the constant s satisfy the

Nankine- ugoiot conditions

(1.3) -s(uR - u +) + f(tu) - f(UL) - 0

and a suitable strict entropy conditions Lax's shock inequalities in the genuinely

nonlinear case (See (1.15) below), and Liu'* strict condition (3) in the general case (see

section 3).

We assume that the system (1.1) in strictly hyperbolic. Thus, if A(u) - af/Du in

the a x a Jacobian matrix, A(u) has a distinct real sigenvalues, ordered

A 1l(a) < X2 (u) < ... < ). a(u) with corresponding right and left eigenvectors rj(u) and

a) for J,k 1,...,, satisfying

A(u)r - .r O )ik

(1.4)
I,*rj - a6k

An elgenvalue A (u) is called genuinely nonlinear if V).j*r (u) never vanishes.

*Department of Mathematics, University of California, Berkeley, CA 94720

1lponsored by the United States Army under Contract No. DA29-60-C-0041.27artially supported by National Science roundation Grant No. M1-81-02360 and Army
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This material is based upon work supported by the National science Poundation umder Grant
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In 1959 Gelfand introduced the following problem: Show that a discontinuous solution

of the form (1.2) (so satisfying (1.3)) is the limit of special smooth solutions

V - U(x t of a reasonable parabolic system

(1.5) uV + f(u) V(U )u as V+0
t x x

if (and only If) the entropy condition is satisfied. In particular, one should determine

the class of viscosity matrices D(u) for which the above is true: such a matrix is

called admissible. The smooth traveling wave solution U(x ) is called a viscous

shock profile.

The existence of the traveling wave U( 
- ) 

having the desired limit (1

requires that. with - at-- U(9) should satisfy the m x m system of nonlinear
V

ODZ's

(1.6) D(U)U - -5(U - u ) + f(U) - f(uL )

for - < & < - together with the boundary conditions

(1.7) lim U(M) - uL la U(C) - uR

hat i, the autonomous system of ODB's (1.6) should admit a trajectory connecting the

critical point uL on the left to the critical point u. on the right.

Several authors have established sufficient conditions ensuring the existence of the

connecting orbit for (1.6), (1.7) under various aessuptions, typically including either

a w 2 or 1UL - uRi small (weak shocks), and either genuine nonlinearity or D(u) E I

(see (4). [1), 121,[31, 11]). A notable exception Is Mock's more recent paper [121, which

finds a broad class of matrices 0(u) admissible for general m and strong shocks, making

global aesmptions of genuine nonlinearity and the existence of a convex entropy

function. On the other hand, Conley and Smller 11] have discovered puzzling examples of

constant positive definite matrices D which are inadmissible, so that for som family of

shock waves the system of ODZ's (1.6) fails to admit a trajectory satisfying (1.7).

Moreover, these examples exist in a simple context, that arising when (1.1) represents the

equations of isentropic gas dynamics

-2-
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v t + p(T) - 0

where one assumes that p'(r) < 0, p"(T) 0 0. The system (1.8) 1s also called the

p-syste.

The natural requirement of parabolicity imposed by Gelfand on (1.5) mans that the

elgenvalues of D(u 0 ) always have positive real parts. Squivalently, if (E),

J - 1,...,m, are the elgenvalues of the matrix symbol

(1.9) P() -iCA(u 0 ) - 92 V(u0)

obtained from linearizing (1.5) at a constant state u4, then for some 6 > 0 depending

on u0  these eigenvalues satisfy

(1.10) Re Kc1(M) I -6102 for It large, o . 1......

Our central objective in this paper is to introduce a very natural algebraic

requirement on the linearized system from (1.5) beyond the condition (1.10) - a condition

on the viscosity matrix D(u O ) we call strict stability. Given the concept of strict

stability, the bulk of this paper (sections 2-4) is devoted to two goals 1) to explain

the examples of inadmissibility in (1), and link the mechanism of inadmissibility with

quantitative violation of the strict stability condition 2) To elucidate the close

relationship between strict stability and necessary and sufficient conditions for

admissibility.

The requirement of strict stability is motivated by the following considerations. The

main interest in the problem of finding viscous shock profiles as described in (1.5)-(1.7)

is to investigate in a special case the limit as v * 0 of solutions of (1.51. The

constant states, uO , are special solutions of these diffusion equations. Linearization

of (1.5) around the constant state u0  yields the linear equation,

vt + A(u )v D(u v ) 0
t 0 x 0 x

(1.11)

vV(x,O) - V0(x)

so that a natural minimum requirement for any viscosity matrix in (1.5) is that the

-3-



solution v of (1.11) converges to v0  for any initial data v0 . This is true for all

v0(x) L2(R) if and only if for any T > 0, there in a fixed constant C(T) so that

with sV(t)v - v V

(1.12) max is (t)V01 2 4 C(T)1v 0 1 2
O<VdC L L
0<tCT

That Is, the initial value problem (1.11) is required to be uniformly well posed in L2  as

v + 0. At any given value u0s there is a set of a x m matrices D(u0 ), the uniformly

stable matrices, SNO ), guaranteeing (1.12). Rowever, this set of matrices, S(Uo), is

a bit too large since the boundary of S(uo), 3S(uo), includes D B 0 as well as a x m

matrices for which the solutions of (1.11) have a purely dispersive character (see section

4). The set of strictly stable viscosity matrices at the point u0  is the interior of the

set 8(u0 ). The strictly stable viscosity matrices at u0  admit the following algebraic

characterization (see section 2 and (13] for further results):

A viscosity matrix is strictly stable if

and only if there exists a 6 > 0 so that

(1.13) the eigenvalues K (E), 1 4 j ( m for

the symbol P(g) - -A(u0 )iC - 2D(u0 ) satisfy

Re K (M) 4 -61EI for all t e a .

Looking back at (1.10), we see that the condition of strict stability strengthens the

requirement of parabolicity to an algebraic stability condition valid for all t e RI and

not just for sufficiently high wave numbers. Thus, one objective here is to study the

existence of viscous shock profiles for diffusion matrices satisfying (1.13) for every

value of u0 -- we call these the strictly stable viscosity matrices in the remainder of

this paper. Our second objective is to explain the inadmissibility examples from [I] and

to identify the concrete mechanism of inadmissibility through violation of the strict

stability conditions In (1.13).

In section 2, first we study some of the algebraic implications of strict stability

regarding the linearlzed structure of the 003's in (1.6) at the critical points, uL , u R

for a general m x m system. For a k-shock solution of (1.1) satisfying Lax's entropy

Inequalities,

-4-
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(11)OkUL) > s > Xk(UR), A k+1l(u R) > s > X -1 l(uL )

we verify there that for the OD in (1.6),

(1.15) the dimension of the unstable manifold at uL  is a - k + 1

the dimension of the stable manifold at R is k

The following is an immediate consequence of this simple fact:

Corollary 1. All the explicit inadmissible viscosity matrices for the system in (1.10)

constructed in 1] (via Theorems 3.2 or 5.2 in [I]) are not uniformly stable at either

uL orU

Thus, the natural requirement of strict stability discussed in (1.11)-(1.13) is violated in

these explicit examples of inadmissibility. In section 2 we also develop apparently weaker

algebraic conditions which are equivalent to the strict stability condition in (1.13) for

2 x 2 systems -- these results are central in our discussion of the isentropic gas

dynamics equations in section 4.

In section 3 we study weak shock profiles for general m x a system. We prove a

theorem which essentially characterizes matrices admissible for weak k-shocks. An

immediate consequence is

Corrollary 2. Assume that D(U O ) is strictly stable at u0  for the m x a system

(1.1). Then there is a fixed neighborhood of u0  such that for any weak solution (1.2) of

(1.1) (satisfying (1.3)) with UL  and u. in that neighborhood, uL  and uR  can be

connected in (1.6) by a viscous shock profile satisfying (1.7) if and only If the weak

solution (1.2) satisfies Liu's strict entropy condition (see section 3).

Our proof of this theorem, based on the center manifold theorem, is quite simple and was

motivated by the work of Kopell and Howard (01, which might be applied In the genuinely

nonlinear case. However, some new observations are needed to handle the general (non-

genuinely nonlinear) case. So strictly stable viscosity matrices D(u) are always

admissible for sufficiently weak shocks. On the other hand, for 2 x 2 system we have

-5-
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Corollary 3. Suppose a - 2. If the 2 x 2 viscosity matrix D(u) is not stable at

u0 . necessarily it is inadmissible for all weak k-shocks with either k - I or k = 2.

In section 4 we present new examples of inadmissible viscosity matrices in the large

where no connection of uL and u is possible, satisfying (1.7) or the reverse. In

these examples, violation of strict stability in linked directly to Hopf bifurcation in a

way which elucidates the mechanism behind the nonconstructive Theorem 5.3 in [11.

All the above results might lead us to guess:

Strictly stable viscosity matrices, for reasonable 2 x 2

genuinely nonlinear system are always admissible for any

shock solutions of (1.1) satisfying Lax's shock inequalities.

In section 4 we identify broad classes of strictly stable (u) which are admissible for

all shocks of the p-system (1.8). We mention here some special results:

Corollary 4. Consider the p-system (1.8), and asame p'(T) + 0 as T + *, p'(T) + -

as T + 0.

1) Any constant strictly stable viscosity matrix D for (1.8) is globally

admissible.

2) Given any viscosity matrix D. strictly stable at a fixed point u0 e R 2 , there

is a smooth strictly stable D(u) such that D(u0 ) - Do and D(u) is globally

admissible.

Our proofs make use of Lyapunov functions obtained from convex entropies in a way suggested

by Mock's work [12].

Despite these positive results, the conjecture above fails. We can construct a

(rapidly varying) strictly stable D(u) for the system (1.8) which is inadmissible for any

given shock. However, the mechanim of inadmissibility is subtle and very different from

those discussed earlier.

-6-
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also In section 4 we present an example with D(u) 6 38(u) for ILl u (,stable bat

not strictly stable) tot the p-system (1.8) for which (1.5) in a dispersive system and

(1.6) is a oonservatNe system admitting A first integral, and no shock profiles.

Finally, we remark that the choice of the L
2
-norm for determining a class of linearly

stable viscosity matrices is not the only natural choice. other natural norm for shock

wave theory such as the L
1 

or DV norms might single out a maller class of stable

viscosity matrices which perhaps admit shock profiles with e speciaL structure.

-7-
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12. T=- ALGEBRAIC STRUiCTURE IMPLIED BY STABLE VISCOSITY MATRICES

if we apply Fourier transforms and Plancherel's theorem to (1.13), we conclude that a

viscosity matrix is uniformly stable if and only if the uniform bound

(2.1) max I exp PI (C(M

0(v

is satisfied F4 e R where PM~ -t -2 D~ - iF(u 0 ). In appendix A, we prove the

following algebraic characterization of the strictly stable viscosity matrices, using the

Kreiss matrix theorem:

Theorem 2.1.

The following are equivalent for a viscosity mstrix D(u) for the a x a system in (1.5)

1) D(u) is strictly stable at u

2) The eigenvalues, K tj - 1'...'M of P( ) satisfy

Re K( ( 4-6 0 M for some fixed 6 0> 0 and all e R

3) The following three conditions are satisfied:

(i) The system in (1.5) is parabolic, I.e. the eigenvalues of

D(u0 ) have positive real part

(ii) I k~k (u 0) > 0, k -

(III) The symbol P(e) has no purely imaginary eigenvalues for *0

Remark. We note here that a simple sufficient condition guaranteeing strict stability is

the following: There is a positive dsfinite symetric matrix, Z(u 0 ), so that EA~u0 ) is

symmetric and 30(u0 ) is positive definite (perhaps not syimetric).

For the proof of this fact, we compute that

Re(e)efte + 4 2 aegoNe - 0

where (PM~ - ac)e - 0, so that criterion (2) of Theorem 2.1 is satisfied.

Next We Use Theorem 2.1 to determine the linearized structure of (1.6) at the critical

Points GL' uR. If u0 is any critical point of (1.6), the stable (unstable) manifold

M.JN+) of (1.6) at u0 Is tangent to the Invariant subspace of the linearization of (1.6)

at 0



(2.2) D- - *) = Q(u0,s}

corresponding to eigenvalues with negative (positive) real parts, and

(2.3) dim M_(u 0 ) - number of eigenvalues of Q(u0 ,s)

with negative real parts

dim M+(u 0 ) - number of eigenvalues of Q(u0 ,s)

with positive real parts

We have the following general fact:

Theorem 2.2.

Suppose D(u0 ) in a strictly stable m x m viscosity matrix for (1.1). For any k-shock

satisfying Lax's entropy inequalities,

A kfUL) > 9 > Xk(UR)

Xk+l(uR) > X k-i(u L

it follows that

(2.4) dim M(uR) = k

dim M+(uL ) = a - k + I

Before proving Theorem 2.2, we remark that Corollary I of the introduction follows

immediately in the following fashion: For shocks moving with positive wave speed for the

p-system (1.8), k - 2, so that applying Theorem 2.2 we have

dim M.(uR) = 2, dim M+(uL) . I

for strictly stable viscosity matrices. On the other hand, all of the inadmissibility

crite:la in Theorem 3.2 and Theorem 5.2 of [I] imply that necessarily

dim M_(uR) - 1, dim M+(uL) - 2 .

Thus the inadmissible viscosity matrices constructed through these criteria cannot be

strictly stable. Similar remarks apply for shocks in the p-system with a < 0, and for

applications of the results in [I] for general 2 x 2 systems.

Proof of 2.2.

we consider the m + I open intervals, 10  U 0

Ij = (j(Uo), A +(Uo)), J = i.....m - 1, Im  ( Cuo),,-).

j (u J+( 0 m (m

-9-



We set

a + number of eigenvalues of Q(uOs) with

positive real parts

a- - number of eigenvalues of Q(uOs) with

negative real parts

and begin the proof of Theorem 2.2 with the claim,

(2.5) 4
+ , 

s- are constant as a varies over each I

and s+ + s- - a

provided that D(u0 ) is strictly stable. First, from (1.14), zero is never an eigenvalue

on any Iji furthermore,

(2.6) Q(u0,s) never has any non-zero purely

imaginary eigenvalues, iT * 0, for any a

because

det(Q - iT) = 0 <-=> det(P(T) - K) - 0

with K - -iST so that K in on the imaginary axis, this contradicts iii) of 3) in

Theorem,2.1. Since the eigenvalues of Q are continuous functions of a and cannot cross

the imaginary axis on Ij, we deduce the claim in (2.5). The proof of Theorem 2.2 is

finished once we establish that

(2.7) s (u O ) 1 a J, j=

for any u0  (apply the information from Lax's shock inequalities and (2.6) with

0  u.L UR). As a + -, Q(uOs) + -sD - I 
and 3) i) of Theorem 2.1 together with (2.5)

guarantees

(2.9) a +(u 0, 0

From (2.6), we se that an elgenvalue of Q(uO,s) can cross the imaginary axis only

through zero and at the special points, s = \(uo), k - 1,...,m. We claim that

For Is - AkI < C, Q(uOs) has a simple

(2.9) eigenvalue Tk(s), with vk( k) - 0, and

-k = (&kOrk) k ,

-10-
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From (2.8), (2.9), and 3) ii) of Theorem 2.1 we deduce (2.7) by induction on J. It

remains for us to establish (2.9). Now, -XkI + A has simple eigenvaluesa therefore,

-IV + (-sI + A) has a unique smoothly varyinq simple elgenvalue, O(T,s), with

*O'D0 ) - 0 for 'iT + 1s - Ak ( . We let r(T,s) denote the corresponding right

eigenvector with ;(0, ) rk(uo) satisfying

C-rn+ (-§I + Aflr = 0(r,•}r

By differentiating this formula with respect to i,s, evaluating at a - \, ' T 0, and

taking the inner product with £k (u ) we obtain

(2.10) -8 0.,Drk) * 0

where we have applied 3) ii) of Theorem 2.1 to 1. From the implicit function theorem and

(2.10). we deduce (2.9) directly.

The Special Structure of Stable 2 x 2 Systems

First, we prove that the sufficient condition mentioned below Theorem 2.1 is also

necessary when m - 2. In fact, we have

Proposition 2.1. The following are necessary and sufficient conditions that D(u) be

strictly stable at u. when a - 2.

1) D1 in strictly stable at uO .

2) There exists a smoothly varying positive definite symmetric matrix, 3(u),

defined near u0 with NA(u) symmetric and ED(u) positive definite.

3) Mi) ( 'kDrk)(u0 ) 0 for k - I and 2, and

(ii) det D(u O ) > 0.

Given the matrix A(u) with distinct eigenvalues, we let R(u) denote a fixed

smoothly varying right eigenvector matrix with L(u) the corresponding left eigenvector

matrix (LR - I,LAR diagonal). The sufficient condition for strict stability in the

remark below Theorem 2.1 is clearly satisfied provided

(2.11) LDR is positive definite

out R(u) is not uniquely determined by A(u). Proposition 2.1 follows easily from the

-11-



following result, which says that (2.11) is necessary for strict stability in 2 x 2

systemsI

Proposition 2.2. Assume m - 2. Let D(u) be a smooth 2 x 2 matrix. Then D(u) is

strictly stable at each point if and only if there exists a smooth positive diagonal

matrix S(u), such that if R - RS, Z - R-1 then LDR(u) is positive definite for

all u.

We leave it as an exercise for the reader to check Proposition 2.2 implies Proposition

2.1. The only if part of Proposition 2.2 is the key fact and this follows from the laema

below.

Lema. Suppose A - (c b) satisfies ad > 0, ad - bc > 0. For -t < a < 1, let

8 4iag(Vi--, i-.a. Then there exist a. and a+, -1 4 a < a+ 4 1, depending

smoothly on A, such that for any a with m < a < Q+, the scaled matrix S- AS is
a CL

positive definite.

Proof. is positive definite if and only if ad > 0 and (0 + Y)2 - 4a6 < 0. NovProAS - (
sa A (cl a. b ' A . . For -1 < a < 1, this is positive definite exactly

when

Q(a) 2 (b(1 + a) + c(1 - a)]2 - 4ad(1 - a 2 ) < 0

To prove the lema, we shall show that Q < 0 between distinct roots a_ and a+ of

Q(Q) with -1 a < C+ + I. We compute

Q(-1) - 4c2 ) 0 QM 4b
2 

) 0

Q(0) - (b + c)
2 

- 4ad Q'(0) - 2(b + c)(b - c)
122

Q" - 4ad + (b - c)
2  

4(ad -bc) + (b + c)
2 

> 0

The minimum of Q(a) is thus attained at G " -Q'(0)/Q". Either lb - cl 4 lb + ci or

vice versa, so 1 0i < 1. The discriminant of Q is

IQ'(0) 
2  

1 QQ(O) - (b + c) 2(b - c)
2 

+ (4ad- (b + c) 2)(4ad + (b - c)
2

- 4ad(4ad - 4bc) > 0

-12-



So Q(a) has distinct real roots in the interval 1-1,1I, which are then smooth functions

of the coefficients.

The technical result below, which characterizes the variation possible when a vector

field is multiplied by an arbitrary smooth 2 x 2 strictly stable matrix, will be useful

in our investigation of inadmissibility for strong shocks in section 4. As usual, assume

that R(u) - (t1 ,r2 ) is a smooth matrix of right eigenvector. of A(u).

Proposition 2.3. Suppose nonzero vectors w and ; in R2 satisfy the

condition

(Q) There exists a positive diagonal matrix S so that wTSw > 0.

(Roughly, condition (Q) means that w and w are not of opposite sign.) Let

v - wirl + w2r2 - R(u)w, v - R(u)w. Then there exists a strictly stable matrix

D(uw,w), depending smoothly on uw and ;, such that v - v. Conversely if 0 is

strictly stable and w any nonzero vector in R2 , then w and LDRw satisfy condition

(Q).•

The proof is postponed until Appendix B.

Remark. Condition (Q) covers two cases:

Q1) If w lies on a coordinate axis (either w1 or w2 are zero so v - ri), then

w must lie in an adjacent quadrant (so wTw > 0).

Q2) If w lies strictly in some quadrant Q of R2  (w1,w2  nonzero) then w must

not lie in the closed quadrant opposite (w € -Q).

Remark. If w,w satisfy condition (Q), so do w,tw + (I - t)w, for any t,I o t 4 1, and so do w, Sw for any positive diagonal S.

-13-
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13. A SSIBILITY IN GXIRRAL FOR MM k-SHOCKS

We begin this section by defining Liu's strict condition (8). We consider the

structure of the ugonlot set of pairs of vectors [uLu1t) satisfying

(3.1) f(u L ) - f(uR) - a(UL - u ) = 0

for some wave speed a. Fixing UL# the local structure of the set of states uR

satisfying (3.1) is well-known (see (3) and (101). In some neighborhood of uL  this net

consists of m curves, u (p), k - .... passing through uL with corresponding shock

deedo k (P) for k - s...,. satisfying

-uk k
(0) - r Cu ) - (0) - - (V rk)(u)

k)C~ Cu Co) uL)r)(L
P k(UL). (;k (p ) .U )

Liu's strict entropy condition for the k-shock wave in (1.2) with 'R  uk(PR is

s(R) sk (0) ) s a k(0R ) for P between zero and R

If A kU) is genuinely nonlinear and JuL - Utl Is small, this condition is equivalent to

Lax's shock inequalities.

Corollary 2 of the introduction is an immediate consequence of Theorem 2.1.3) and the

main result of this section to be described below. Before stating this result, we remark

that in the special case where u and f(u) are scalars, Liu's (strict) entropy condition

reduces to Oleinik's familiar (strict) condition 2; furthermore, we invite the reader to

check by explicit quadrature that for the scalar parabolic equation

u + f(u) - VU
t X xx

ULOIR can be connected by a viscous shock profile if and only if Oleinik's (strict)

condition 3 is satisfied -- this fact indicates that the weak shock theorem stated below

is sharp in general.

Our main result here Is the following:

-14-
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Theorem 3.1. Fix u0 e VP and k. 1 4 k C a. Assume Ak(u) is not linearly degenerate

in any neighborhood of uO . Assume that D(u o ) satisfies the nondeqeneracy conditions:

(i) D(u 0 ) Is nonsingular

ii) Lkrk(U01 * 0

(iii) -
2

D + IC(A - Xk)](. 0 ) is nonsinguLar for all real * 0.

Then the following are equivalent:

1) XkDrk(u 0 ) > 0 [ rk(u 0) < 01

2) a is locally [in amLssible for k-shocks in a neighborhood of u0 . That is,

there exists 8 > 0 so that for any uL and ul in B,(u 0 ) - (uI Ju - u1 < 6}

satisfing the Rankine-Nugoniot relations for some speed s = sk(p.), then a shock profile

lying in a 6 (u 0 ) exists connecting u.% to uR  [uR to u,] if and only if Liu's strict

entropy condition sIN) is satisfied. Zn any case, at most one trajectory u(V) of (1.6)

connecting uR and uL, exists which remains in 6(u0 ) for all F real.

Remarks before discussing the proof of Theorem 3.1, we indicate the fashion in which

Corollary 3 of the introduction is an immediate consequence of Proposition 2.1 and this

theorem. From 3) of Proposition 2.1, if a parabolic viscosity matrix D(U) is not

uniformly stable at uO , then necessarily,

either ILOr (u0 ) < 0

| or Y2 0r2 (u0 ) < 0

(or both occur). With the above inequalities, we apply the inadmissibility criterion from

Theorem 3.1 to either the one waves or two waves to deduce Corollary 3.

Theorem 3.1 is proved in two steps. First, for all uL near u0  and a near

A(u 0 ) we reduce the connection problem for the system (1.6) to that for a scalar ODE

locally, by employing the center manifold theorem with the nondegeneracy conditions

i-ili). That is, a curve is constructed, locally invariant for (1.6), which contains all

the critical points of (1.6), for any uL , in a fixed neighborhood of uO. In the second

step, this one-dimensional flow is analyzeds Critical points on the invariant curve are

Okkpoints u.,(p) on the kugoniot curve for u., having a (p)- . The stability of the rest

point uaL In the flow is determined by the sign of 1Drk(uL)(k ,(aL) -). For a shock

-15-
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satisfying a(M), ak(0) = ({u L) ) a. Degenerate cases are treated by continuity, using

the center manifold.

Step 1. Xxtend the system (1.6) by introducing the parameters v ' uL  and a as

additional variables then (1.6) may be written

u D-1 (u)[f(u) - f(v) - sfu - v)]

(3.3) v =0

a =0

Our analysis will be based on the construction of a center manifold for (3.3) at the

critical point (uvs) a (u0#u0,Xk(u0)). The center manifold theorem (Kelley, (6),

Theorem 3) says:

Theorem. Suppose that a system of ordinary differential equations may be written as

x' = Ax + X(xyz)

y' = By + Y(x,y'z)

21 = Cz + Z(x,y,z)

where A,B, and C are constant square matrices whose eigenvalues have positive, zero,

and negative real parts, respectively, and X,Y, and Z are Cr (r ) 2) and vanish along

with their first derivatives at (x,y,z) = 0.

Then there exists a locally invariant manifold for this system,

N* = ((x,y,z)I IYI < 6, X = u(y), z = w*(y))

where u* and we are Cr functions defined for Jy < 8 for some 6 sufficiently

small, and vanishing with their first derivatives at y - 0.

The center manifold need not be unique, but the following uniqueness property for

trajectories does hold: The center manifold (parametrized by y) may be taken to be the

intersection of a center-stable manifold (parametrized by y and a) and a center-

unstable manifold (parametrized by y and x). Then any trajectory which lies in a small

neighborhood aa(0) for all time must lie on this center manifold. This property follows

from this fact, stated in Kelley (7): If a trajectory starts in a small neighborhood

88(0) at a point not on the center-stable manifold, then it must leave 8 (0) at some

positive time.

-16-
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Let us now apply the center manifold theorem. Without loss of generality, we may

assue = 0' k(u0 ) - 0. Fot convenience, we introduce w - u - v and the vector

W - (w.v.s)t in R20+'. We write (3.3) in the form

(3.4) V - T(W)

To apply the center manifold theorem, it suffices to describe two invariant subspacee

for the linearization d? at the critical point O: algebraic eigenspaces corresponding

to groups of eigenvalues with zero and nonzero real parts, respectively. In block form on

S1
m 

x R. we calculate

dTO)- 0 0 0

The characteristic equation for dT(0) may be written

X!."det(A - X)U- 0 1 0

We claim that the nondegeneracy conditions Imply that the algebraic eigenspace for

sigenvalues with zero real part is simply the kernel of d21O). Indeed, condition iii)

means that dT(O) has no nonzero imaginary sigenvalues.

Claims The algebraic eigenspace for dT(O) for the eigenvalue 0 is equal to

ker 4T(0} if and only if I kDr k(0) * 0.

Proof. This elgenspace is larger than ker df(0) if and only if range dT(0) r ker dT(0)

is nontrivial. This occurs when there exists v in IP such that D-1 Av - rV or

Drk - A-v, whence Zk Dr k 0. If *Drk * 0, no such v exists.

Thus, let Y - ker dT(0), X - range dT(0). X and Y are complementary invariant

subspaces for 4T(0) comprising the algebraic eigenspaces for sigenvalues with nonzero and

zero real perts, respectively. Further explicit decomposition of I2n+ I  is unnecessary.

Applying the center manifold theorem, we haves

Proposition 3.2. Assume that D satisfies the nondegeneracy conditions at uO - 0 with

)k(u 0 ) - 0. Then there exists 6 > 0 and a Cr function g : Y X defined on

a6(0) 0 Y so that

-17-



1) * - (4+ y e ?V 
1 Ix - g(y)} is a locally invariant manifold for equation (3.4).

2) g(0) 0 and dg() - 0. Thus I* is tangent to Y at 0.

3) Any trajectory of (3.4) which lies in a6(0) for all & lies in N*. in

particular, critical points in 86(0) lie in N*.

We now describe how this center manifold reduces the connection problem for the system

(1.6) to one dimension. Observe that Y - ker dT(0) is spanned by the a + 2 vectors

(rk.0b0), (0,0,1) and (OrjO), J - 1,..

Proposition 3.3. Assume that D(u0 ) satisfies the nondegeneracy conditions i-iii). Then

there exists 6 > 0 so that if 1% - u0 I + Is - Ak(u0 )I < 6, there is a locally

invariant curve u(n,uL.s) for the system (1.6) containing uL  and any point uR in

Ba(u 0 ) satisfying the Rankine-Hugoniot relations f(ul) - f(u.) - s(UR - uL ) = 0.

Proof. Define a line in Y parametrized by y(n) = (n kULs ). The curve

W(} - y(n) + g(y(n)) lies in K* while Iy(T)0I < 6. Since g maps into range

dT(O), we may write g(y(n)) - (g;(l,uL,s),0,O). Under equation (3.4), the v and s

components of W = (w,v,s) remain invariant. Hence the curve W(n) is the intersection

of two locally invariant manifolds, so is locally invariant. Returning to the (uv,s)

coordinates of (3.3), we obtain an invariant curve for (1.6) parametrized by

u(n,uls) = UL + Irk(00) + gC(uVuL s)

so long as

ly( )l - lnrkl + u. - u0 l 4 Is - Xk(uo)I < a

If uR  is in 86(uO ) and f(uR) - f(uL) - s(uR - uL ) 0 0, then the point (UR - uL,uL,s)

is a critical point of T(W), so lies in N', and therefore uR - uL - Rrk + ; R'uL's)

for some nR.

The flow on the invariant curve u(n,uL, s) is now determined by a scalar ODE for

n(c),

(3.5) n " r(n,uLs)

where F is Cr
, 

determined by the equation

(3.6) D(U)U n(f, uLks) - f(u) - f(uL) - s(u - uL )

where u = u(n,uL, s). From the uniqueness property (3) of Proposition 3.2, two critical

-18-
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points ,u R  in aa(u 0 ) are connected, left to right, by a trajectory in a 6 (u 0 ) if and

only if VL - 0 and rR are connected, left to right, by a trajectory of (3.5).

Stey 2. We proceed to analyse the flow (3.5). Two critical points L - 0 and nR are

connected, left to right, by a trajectory of (3.5) if and only if sgn F(nvuL,s) - egn nR

for n between 0 and %. From (3.6) we obtain

V(VULS)Ik (UL)D(u)ul -= )1f() - f(%) - (. - U0

(3.7)
Fn(O,uL,*)LkLL)D(uL)un - ((uL) - 8)k(UL)u"(O,UL.)

We assume 6 is so small that for each uL  in B6(u 0 ) the Hugoniot curves

;Nk(01UL) in a 6 (u 0 ) are an described at the beginning of this section. The invariant

curve u(. UL, s) intersects the Hugoniot curve u (puL) just when n is a critical

point of (3o5). We define a correspondence between n and p (given uL  and a) by

0(n) - Lk(uL)(u(vi,uL.G) - UL), so Pn - tk(uL)un

Lema 3.4. If 6 is sufficiently small, then if IuL - u01 + Is - \(u 0 )l < 6, we have

1) sgn £k(uL)D(n)un = gn ZkDrk(uO) and sgn Lk(UL)u n - 1 in 8a(u So P

increases with ni.

2) F(n,uL,s) - 0 if and only if a k(p(v)) - a or n - 0.

3) For all n between 0 and n,

(3.8) sgn F(TuLs ) sen srk'u0  agn vis ( (W)) - a)

provided s k(p()) - s is of one sign between 0 and n0.

Using (3.8) we may complete the proof of Theorem (3.1). Assume aL And

UR I uk(p Ru L ) satisfy the Rankine-Hugoniot relations with s a k(p R
)
, and assume Liu's

strict entropy condition s(Z) holds. Then uR - u(iR,uL,s) for some %, and

R k u LMu)(UR - uL ) = o(viR). By (3.8) and condition e(R),

sgn F(n,ULs) agn LkDrk(uO) - gn

for all n between 0 and nR. So a trajectory of the flow (3.5) connects % - 0 and

nR left to right, if and only if 1kOrk(uo) > 0.

If Ik rk(u0) > 0 and % in am above, but the entropy condition is not satisfied,

then either k (p) a for some p between 0 and p., whence a critical point

-19-
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separates 0 and nR in (3.8), or else sk (p) for all p between 0 and PR . Then

(3.8) implies that a trajectory of (3.5) connects nR on the left to % - 0 on the

right. in either case, no trajectory of (1.6) lying in Ba(u0 ) can connect % on the

left to uR  on the right.

Proof of Proposition 3.4. Part 1) follows from continuity and the fact that

u(0,u0,k(uO)) - rk(a), since dg(O,u 0 ,\(u 0 )) - 0. For part 2), if 6 is

sufficiently small and n * 0, then F(n,UL,s) - 0 if and only if u(n,uLs) lies on the

-kc k
k-th Hugoniot curve for U, so u(n, ULs) = u (PuL) for some p, and a (PguL) - a.

(-kp) % n.
But then p - L(UL)(uk(p) - UL) - (n). We shall establish part 3) in the case that

sk (p(n)) s for n between 0 and % > 0, and XkDrk(u O ) > 0 (remaining cases are

kck
similar). First, k(L) 8s (0) ) s. Then )(UL) > a for any s < a, so

F(O,UL,8) > 0 by (2.5). If s is close to S, then p(
I nouL,) < P(nouLs), so

F(n ;, ) 1 0 for n between 0 and 1 1n0 (Since sklp( > ;, it cannot
UL 2 1.(ic

vanish by part 2). Letting a increase to s we get F(n,u L,s) > 0 for n between 0
I

and 2 . (Again, r(nuL,) cannot vanish for n between 0 and no by part 2).)
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14. ADMUSSIBIA VISCOSITIS FOR THR y-SYST4

Becides the basic conditions p'(T) < 0, ps(T) ) 0, for the p-system in (1.8), in

this section we assume additionally that

-pI(,) + a as T +
(4.1)

-p (T) + 0 as r +

These conditions simplify many of the statements below. Suitable modifications of these

results when (4.1) is not satisfied we leave for the interested reader to verify. With

U, . (LVL), uit. (TR,",vR), the Hugoniot relations from (1.2) imply that

( - aa p - P(TR)"(vL"~ ~ ~~~~" v- " (T .'•"* (R ' )

(4.2)

p(,,
) - p(TR) - D(vL - vR )

The back shocks (1-shocks) are those waves moving with speed a < 0 and satisfying the

entropy inequality

(4.3) - >(rL) a > -(cTR)

while the front shocks (2-shocks) are those waves woving with speed a > 0 and satisfying

the entropy inequality

(4.4) c(k%) > a > c(rR)

Rere cC) - is the Lagrangian sound speed. As a consequence of Galilean

invariance, the front and back shocks should describe the same physics under spatial

reflection. Indeed, this is the case and in fact the reader can easily verify that

('LVL), (TR,vR) define a front shock moving with

speed s > 0 satisfying (4.2) and (4.4) if and only if

(4.5) (TVL). (rRvR) define a back shock moving with

speed -a < 0 satisfying (4.2) and (4.3) where

(rLVL) - (,r -v ), (7;) - (TL-VL)

ror the p-system, one right sigenvector matrix is

(4.6) R() " (c ,) -cr)

with corresponding left eigenvector matrix
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(4.7) L() - -1
2 -c-

Here we study the (non)existence of viscous profiles for parabolic perturbations of (1.8)

where the diffusion matrix D is given by

(4.8) D(T,v) - ( :: ::1 ) : +d 2 2  
1 2

d 21 d 22 ad22 -d12d21 > 0

and the matrix entries are smoothly varying functions of (T,v). From (4.6)-(4.8) we

compute

(4.9) 2(LDR)11 , (cd1 2 + c-ld21) + d1l + d22

2(LDR)2 2 = -(cd 1 2 + c-ld 2 1) + dil + d2 2

therefore, from 3) of Proposition 2.1, we conclude that D(Tv) is strictly stable at

(tvl if and only if

(4.10) Ic(T)d 12 + (c(T)) 1 d2 1 1 ( d 1 1 + d22

Admissible and Inadmissible Viscosity Matrices for Weak Shocks

The following result is an imediate corollary of Theorem 3.1 and the remark below that

theorem:

Theorem 4.1. Consider an arbitrary state (T 0 .v 0 ) and assume

(d11 + d 22) (c(T 0)d12 + c( 0 d 21 0 . Then

(1) 0 is admissible for both front and back weak shocks in a neighborhood of

(Toov 0 ) if and only if 0 is strictly stable at (oV 0 ).

(2) Assume 0 is not strictly stable at (O0,).

A) If cd12 + C -d 2 1 < -(d 1  + d22) at (T 0 ,v 0 ) D is inadmissible for all

weak hack shocks but D is admissible for all weak front shocks in a

neighborhood of (,o)0

B) If cd12 + 0- 1
d2 1 ) dll + d22 at (T0 ,v 0 ), D is admissible for all weak

back shocks but D is inadmissible for all weak front shocks in a

neighborhood of (TOvO)

-22-
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We make the foliowlng two remarks which are easy consequences of Theorem 4.1.

Pemark I. If 0 is a constant diffusion matrix, then 0 is admissible for all weak

shocks in a small neighborhood of all points (Ov 0 ) if and only if D is diagonal,

I i.e..

- d dl > 0, d22 > 0
al d22)

This fact follows easily from Theorem 4.1 since admissibility occurs when

Ic()d + (c(T))-Id22 e dll + d22

end we use (4.1) with T + 0, T + - to justify the above remark.

Remark 2. There are never any examples of diffusion matrices D for the p-system which

are inadmissible for all (front end back) weak shocks. The announced example in the

introduction of Ml] and described at the end of that paper is inadmissible for all front

shocks but admissible for weak back shocks at least (this remark corrects a small error in

cIM).

Kopf Bifurcation and Inadmisslbility in the Large

The examples of inadmissibility described through Theorem 3.1 are not the only ones

which occur in the large. One of the critical points can also be encircled by a periodic

(or homoclinic) orbit leading to oscillatory behavior and preventing connection of the

critical points. This possibility was pointed out in Theorem 5.3 of [I] through a

nonconstructive argument. Here we link the appearance of such periodic orbits

quantitatively with violation of the strict stability condition. & more subtle and quite

different example of inadmissibility through oscillatory behavior for strictly stable

diffusion matrices is discussed later In this section.

To be specific, we assume that there is a fixed point (T0 1v0 ) where D(T0,v 0 ) is

not uniformly stable (see (4.10)) and in fact,

(4.11) d11 + d2 2 < d 12c( 0 ) + d21(WT0

We consider front shocks with (rRov R) R (tov 0 ) and the shock speed, s, as a

bifurcation parameter with a ) c(Y ). From (4.2) and (4.4) it is easy to see that given

-23-
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(iR' v.) and a > c(TR) there is a unique Cr TL"' defining a front shock. From (4.1)

a varies over (c~r R),-n) so that given (4.11), there is a critical shock wave speed

a > Cr 0 with

(4.12) 0 (d +d ) ( ) + Cr d
c(O 1 22 ~ 0)d12  0 21

We compute tha

(413 (rD
1

41) . + d2 2 ) + ad 12 + c-1 d 2 1 J

-c -0

Therefore, from (4.12), (4.13) at the critical point (T R' vR - Cc.va0) and for

as 0 0-I 8 1(k - si) has nonzero complex conjugate eigenvalues, i(s), !(a) with

R.A~s) > 0 so - 8 so8

(41)Re X~s) <0 ao 0 < a

Re Ms 0 0

and also Re 11(s) IV-s * 0 so by Ropf's bifurcation theorem,

(4.15) CR"vR) is encircled by a small amplitude periodic
orbit for either as0 - a, < a < or so < a <

and the corresponding front shock is necessarily inadmissible for this viscosity matrix.

The same phenomenon at (r 0 ,v .) occurs for back shock* provided that the strict stability

condition is violated through

d 12 Cr 0o) + d 2 1 c(r0 ) -(d11 + d2 2 )

rather than (4.11).

Sy looking back at Theorems 2.1 and 2.2, the reader can see that the above argument

for the p-system illustrates in a special case, a very general link between violation of

strict stability and occurence of small amplitude periodic orbits bifurcating from critical

points for (1.6) for general a x m systems and guaranteeing inadmissibility when a 21
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however, to keep our discussion brief, we do not develop this here in detail beyond the

above example.

Admissibility in the Large

Here we exhibit a reasonably wide class of strictly stable viscosity matrices which

are admissible for all shocks of the p-system. Zn particular , we prove Corollary 4 of the

introduction.

Theorem 4.2. Suppose conditions (4.1) hold, and suppose D(T,v) is a smooth strictly

stable viscosity matrix for the p-system such that

a) D(,v) is constant exterior to a compact region Q in the half plane T > 0.

c(T) 
2

b) For som fixed (. *D(T,v) is positive definite in 0.

Then D(r,v) is admissible for all shocks of the p-system.

Remark. For any fixed (-,v), there does exist A, lJ < c(U), such that

A ;) D(T,v) is positive definite. To see this, consider the matrix of left

eigenvectors for the p-system defined by

A~ -+
L 0 - -I)

It follows from Proposition 2.2 that for certain a in the interval (-1,1), the matrix

L -1 TL DL hence L L D, is positive definite. but

F 2
LL -2 (c c. )

Corollary 4 of the introduction follows immediately from the theorem and remark

above. For if O0  is strictly stable at a fixed (T0 ,v0 ), then for some

, (c2(T) ) DO is positive definite at Y - Too so also for T in a small

neighborhood 0 of (T0,v 0 ). Let *(T,v) be a function such that 4- 1 at

(UOv0), * B 0 outside 0, and let D(T,v) - 400  (0 - 0)I. Theorem 4.2 applies,

yielding Corollary 4.
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To put our proof of 4.2 in context, recall that an entropy for the system of

conservation laws (1.1) is a function E(u) such that for some Q(u) (the entropy flux) we

have

(4.16) VE.A(u) - VQ(u)

Smooth solutions of (1.1) also satisfy E(u)t + Q(u x - 0. The Hessian of E(u)

symatrizes (1.1), i.e., V 2VA(u) is symmetric (differentiate above). (Compare

Propositin 2.1(2).) A 2 x 2 system such as the p-system admits many entropies. In fact,

for the p-system (4.16) reduces to the one equation rT" c 2 (T)! . 0. We consider two

special solutions: Z 0 (T,v) = v 2/2 + P(r), where P'(T) = p(), and i(T,v) - rv. we2

define Z - E0 + L, and note VE- ( ). Hypothesis b) of 4.2 simply says that

V 2iD is positive definite in S1, and implies that E itself is convex in A.

Proof of 4.2. Fix a front shock with uL  (TrV), = (TR,V,) and a satisfying

(4.4) so that TR > TL, vL > vR  For the system

-81 - tR ) - (v - V )

(41)Duu= ---v(u)
(4.17) DlUx - p(T) - p(T R ) - s(v - v R )

we shall show a trajectory exists connecting uL  on the left to uH on the right. From

Theorem 2.2, uR  is a stable node for this system and uL  is a saddle point.

We now invoke some results of Conley-Smoller [1] and claim: If no periodic or

homoclinic orbit exists encircling uR, then one branch of the unstable manifold of uL

approaches uR as x * -. The results of [I] which are pertinent are a classification

theorem for flows in the plane with two critical points, one a saddle, one a node (Lemma

4.1), and the existence of an "isolating disk* for the system (4.17) with a constant

diffusion matrix (Lemma 5.1), which traps some branch of an invariant manifold of uL

inside it (Lemma 4.2). In the present situation, the isolating disk of Lemma 5.1 may be

constructed to contain nl in its interior, since D(u) is constant exterior to a.

We now introduce two functions
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A ° - p(r)(s(r - 'I ) + v - v) - (v2/2 + P(T) - v(P(TR) - R)

(4.tg3

A - P(r) - rp(T) - s(r - T )(v - v ) - (v /2 - vvR)

and define Ax - A0 + IA. This Ax coincides with the functional A which appears in

Mock 112] if the entropy is taken to be Ex . It has the property that

VAX . (C2(T) 1)Vlu) - V2 12V(u)

along any trajectory of (4.17), then,

A (u)x -V(u)oVV 2XD 'V(u)

So in any region where V2BAD is positive definite, AX is increasing along trajectories.

Note that from the first remark of section 4, D(T,v) Is diagonal exterior to 9. It

follows that A0  increases along trajectories exterior to fi, and that AX increases

along trajectories in the strip 0 < I < T where c(r i) - Ill. (This strip contains

A.) The phase portrait of (4.17) for D diagonal is shown in Fig. 1.

uu L

v2.

Fiqure 1. Phase portrait of (4.17) for diaqonal D
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we now consider two cases. First, suppose IR > TI" Then it is clear that no

periodic or homoclinic orbit encircling uR can exist, for it would have to intersect the

vertical line T - TR  in two places, but Fig. I shows that is impossible for a trajectory

in the region T 2 TR .

in the second case, TR 
< 
TV, no periodic or homoclinic orbit encircling %R  could

lie entirely to the left of the line T - T1, for AI increases on trajectories there.

The remaining possibility is that part of the encircling orbit lag to the right of the line

T - TV It can only do so if that pert is one connected piece as indicated in Fig. 1.

Let u - (TrV _ ) be the point of entry, u+ - (TI,v+) the point of exit. Then

A (C+) - (u_) > 0 > AC(u ) - A(u_)

if the encircling orbit exists. Since X - c(T1), this implies

c(T I 1 1(U ) - (U_)I A 0(u ) - A 0(u

We will show this cannot hold, so the encircling orbit cannot exist. Now

A(u ) - Mu - (v - )(v - (v + v_)/2)

where v, - vR - -s(TI - R). With v2 -v R = (p( 1 ) - p(TR))/@, observe that

V_ < v1 < V+ < v 2 . Also

A0 (u) - AO(u) - s(v+ - v)(v2 - N + v.)/2)

Then v2 - (v + v_)/2 > Iv - (v + av)/21 and s > €(T R ) > c() s,  o the inequalities

above cannot hold, concluding the proof of Theorem 4.2 for front shocks. For back shocks,

replace v by -v, x by -x in (4.17), reducing the connection problem to that for a

front shock.

An Exafmle: Strictly Stable, but inadmissible in the Large

We give here a construction which shown that, despite the positive results above, the

local condition of strict stability is not quite sufficient for global admissibility.

Proposition 4.3. Fix a front shock (vL), CTR'vR) with c(rL) > a > C(T R ) > 0 There

eixsts a smooth choice of D(T,V), strictly stable at each point, such that the system of

O's (4.17) for the p-system admits a closed periodic orbit encircling ( ,Rv R,

excluding (TLvL), so no trajectory can connect the two. We may choose D B I outside

an annular region containing the periodic orbit.
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Proof. We Will make use of the strictly stable matrix function D(uw,;) of Proposition

2.2. Observe that D(u,ww) - I (see appendix B). Of course, u - (r,v). Our procedure

is as followss

a) We will exhibit a vector field Vl(u) in an annular region encircling (TRvR)

excluding (TLvL) vhich aftits periodic orbits, and Is also such that the pair LV(u),

LVI(u) satisfy condition (Q) of Proposition 2.2 at each point.

b) Then V and V, can be patched together by a partition of unitys Take a

function #(u) which is I on a periodic orbit and 0 outside the annular region, and

let V - ) I +.

c) By the remark ooncluding section 2, LV and LV satisfy condition (Q)

everywhere. Simply take D'1u) w (u,LV(u),LA(u)).

It remains to perform step a). Because - (TR, VR) is a stable node for the vector

field V(u), the map u + w given by

w - -LV(u)

is locally invertible at w = 0 by the inverse function theorem. in the v-plane we

consider the family of curves w( Sr 0 ) in polar coordinates,

r(er I- (Icos 8- 8 OP + lin 0 - 8,P)'l/P r
0 0 0 0

for r. small, p and 8 fixed, I < p < 2, 0 < 0 < w/4 (see Fig. 2)

Fiqure 2
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This curve Is the boundary of a ball in the p-metric IO - (Ow I + 1w 1/ rotated

through an angle 80. It has the property that for each 0, the pair of vectors

-w(8), 4() satisfy condition (Q). For r0  sufficiently small, we may then obtain

closed curves u(C;r 0  encircling uR via the isomorphism u (-> w defined above. Then

-3( ( ) a +[ *CCT) 0c) 1 0(r ))Lfi(0,r);() ~ c) (s+cau 0 a - c(T)- 0 00)L(r0)3u

There is a smooth choice of positive diagonal S(9) (see appendix B) so that

-Wv S(8) # Cr02 for all 6, C > 0 constant.

With S = 8"diag(s + ce - c), c - c(r(:r 0)) we have

LV(u(e))!Lf(e) ) cr - 0(r0
3 ) > 0 if r0  is small.

Therefore it suffices to take V1 - d(Sir 0  in step a).

The Admissibility Criteria of Conley-Smoller and Strict Stability

Here we remark that under very general circumstances, application of the admissibility

criteria of Conley-smoller from (1l to one front shock and one back shock associated with a

given value of T automatically forces the diffusion matrix to satisfy a stronger

requirement than strict stability. For simplicity in exposition we only state these

results below for the paired front and back shock* deecribed In (4.5), related through

reflectional symetry, and leave the obvious generalizations to the interested reader. We

have

Proposition 4.4. Assume the admissibility criterion of Theorem 3.2 of [1] applies to both

the front shock and back shock described in (4.5) for a fixed shock speed s > 0. Also

assume the diffusion matrix D satisfies D(TRPv R) - D(TR-VR) - in particular any

constant D always satisfies this requirement. Then D Is strictly stable at (U Rtv R

and satisfies

c(TI

Ic(T )d 1 2 + c(TR) d 2 1  -R 1d1 1 + d22 ) < d + d2 2

To apply Theorem 3.2 of (I] to a given front shock connecting (TL'vL) to (T R )

with speed a > 0 requires at (rRtvR),

d12s < d22
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2 21 < d

so that

d12c + d21 "  
< ; Oil + 422)

Similarly, connecting (iT,vR} to (L ,-v L) with wave speed -s requires by the same

conditions that at (R#-v R )

d12c + d21-1 > . c (d + d
d12  2 1c ; 11 22

Since the entropy condition guarantees c(TR) < 0, the conclusion of Proposition 4.4

follows.

We also have

Proposition 4.5. Assume the admissibility criterion of Theorem 5.2 of [1) applies to both

the front shock and back shock described in (4.5) for a fixed shock speed a ) 0. Also

assume the diffusion matrix D satisfies D(-rLVL) - D(T L-VL). Then D is strictly

stable at (rL.tvL) and satisfies

C(L)d12 + CCTL) 4211 c ) 11 22

First, we apply the admissibility criterion of Theorem 5.2 from [1] for the shock

moving with speed a > O this requires that the trace of the matrix in (4.13) is negative

at (TLvL) so that

cd2 + - 1 r (d1 + d22 )

Similarly, applying this criterion to the shock from (4.5) with speed - a requires that

the trace of the matrix in (4.13) is negative at (TL,-V L ) so that

od + c-
1
d2 > " (dil + d2212 21 T L~ ) 22*

and these two inequalities together with the entropy condition c(TL) > a Imply the

conclusion of Proposition 4.5.

An Inadmissible Matrix on the Boundary of the strictly Stable Viscosities

We consider the explicit choice of the matrix D given by

(T) - ( )
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This matrix is associated with purely dispersive wave propagation for (1.5) since LDR(T)

is a skew symmetric matrix. Furthermore, 0 in on the boundary of the set of stable

viscosity matrices since D(T) is the limit as C + 0 of

an D (T) is strictly stable because (4.10) in satisfied.

Fixing any shock (TL,vL),(TR,vR),s, it is easy to check that the function AO(T,v)

of (4.18) is constant along trajectories of (4.17). Since A,(T ,vL} AO(TRvR), no

connection is possible.
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Appendix A. Proof of Theorem 2.1.

We begin by developing se necessary criteria for a viscosity matrix D to be

stable, i.e. for D e S(uO). From (2.1) it follows that

(A.1) max IstP(E) 1 C
0 (t(

for som fixed constant C, where P(g) = -ED - iA. This estimate can hold only if the

eigenvalues of P(Q) have nonpositive real part for all real C. Using this principle, we

can establish:

Pronosition (A.1). Assume D is stable at u0 (D e S(u0)). Then

(1) The eigenvalues of D have nonnegative real part.

(2) PkDrk(U0 J ' 0 for k -

(3) For any eigenvalue K j(M of P(M),

Re K jM) 4 0, -

Proof. From the discussion above, (3) is immediate. Define, for convenience,

B(O) w D sin e + iA cOS 6

zigenvalues j/() of B(9) are related to eigenvalues .c1(9) of P(9) by

111()-(tan 8/cos ) - -K j(tan 8) for 6 * 0, -w/2 < 8 < w/2

From (3), and using continuity,

(A.2) (sgn O)Re P(e) ; 0, -w/2 Ce w/2, j - 1,...,

Setting 8 - 1/2 we obtain (1). For (2), observe S(0) - iA has distinct imaginary

eigenvalues. Therefore, for mall 0 there exist smooth eigenvalues MOO) and

eigenvectors YO), with Pk(0) - ikX(u 0 ), Rk(O) - rk(u0), satisfying

(B(O) - .(O))R k(e) - 0

Differentiate and set 8 = 0 (B'(0) - D). Then dot with Y(u ). We obtain

(A.3) LkDrk(uO) -P()

Part (2) now follow using (A.2).

Proof of Theorem 2.1. We shall argue that (1) implies (2) implies (3) implies (1). Assume

that D is in the interior of 8(uo). Then for some 60 > 0, D - 6 0 is stable, I.e.,

2in 8(u0 ). The eigenvalues C (9) of i(c) - -E2(D - 6 0) - LEA then satisfy
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Re ;( -Re 1C M) + a 0&2 -C 0

establishing (2).

It is not hard to show that if same part of condition (3) does not hold, then (2)

cannot hold, by using scaling arguments as In the proof of Proposition A.1. Since the

conditions in (3) are open conditions, to complete the proof it remains only to show that

if conditions 31) - 31il) are satisfied, then 0 Is stable, I.e. in Sluo). We will make

use of one part of the Irelss matrix theorem.

Theorem (Kreiss, 1959 (9]). Let a family of m x a square matrices be given. A necessary

and sufficient condition that C 1 > 0 exist so that

tA
Ie I C C1

for all t ) 0 and all A in the family, is

(X3) There exist constants C3 1 and C3 2  and a matrix S(A) for each A in the

family, with max(ISI,tS' l) < C3 1 , so that

U1 b12 ....... b 1

1 0 02 ........ b2m

SAS

0 .... .. ... . 0I

is upper triangular, with

(A.4) Re P 1 C...' Re l M 0

and

(A.5) lb i C321Re 1i for i <j

Assume D satisfies conditions 31) - 3111). We shall verify the cordition (K3) for

the family of matrices (P(&)lt e RI, or what is the same, because of a positive scaling

factor, for the bounded family (-sin 8 B(8)1-w/2 4 & 4 w92j.

We begin by using condition ii), constructing a suitable S for 6 near 0. Prom

the proof of A.1, the matrix B(O) may be diagonalized by a matrix R(O) of rightII
eigenvectors for 11 small (so 8 . R(), and bij - 0) and its distinct eigenvalues

1ik(0) satisfy uj(O) - tkDrk(u0) > 0, so for 161 t 600 we have -sin Ok() < 0.
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por 68 0 161 4 v/2, we may choose a unitary matrix S(9) which puts -*in 6 B(O)

into upper triangular form satisfying (A.4), by Schur's theorem (or see Richtuyer and

Pworton (141, p. 77). The eigenvalues iA (6) of -sin 6 9(6) are continuous and never

touch the Imaginary axis for 6 4 161 9 w/2 by conditions J) and iii). Therefore
0

IRS1Ae ~a(9)1 3, 0 0 for 60 161 4 /2. But the off-diagonal elements of

SC-sin 6 8)971(6) are uniformly bounded, since S is u.titary and B(9) bounded. So

WK) holds, and Theorem 2.1 Is established.
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Appendix 8: Proof of Proposition 2.3.

consider the converse part first. If 0 is strictly stable, there ey.ista a positive

diagonal S such that S WDRS is positive definite, by 2.2. Then if w is nonzero,

0 < (S i.Si 'LDRS(S vi _ Ti-2LDRW

so w and LDRw satisfy condition (Q).

Now assume w and wnonzero, satisfy (Q). Then there exists a rotation matrix

0() 0 -sin 8), with 181 < -/2, and a constant c > 0, such that

-cO(O)Sw. With L6R =cO(6S, 0 is strictly stable, by 2.1(3), since cos e > 0. In

order to show that D say be chosen smoothly, it suffices to show that S, depending on

v,w, amy be chosen smoothly.

Let 8(t - diag(t,2 - t). We shall show that t may be chosen as a smooth function

of the angles 8 - arg w, arg w in the proper subdomain of the torus S x S .In

Figure 3 below, the torus is divided into 16 square patches

(k -!, (k + 1) -!) x (i 1, (Z + 1) -) indicating regions in which w and w lie in given

quadrants. The domain is the open, connected set indicated by shading.

0

IT I

-~ 0 2~ 1! 0

1 1Figure 3. Domain of tC6,8) in S x S
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Define t(0,0) as follows If (8,e) lies in a square on the main diagonal (so

k k, i.e., w and w lie in the same quadrant), define t(8,0) - 1, so S(t) - I.

Consider a particular patch Q off the min diagonal, Q - (0, 1) x (2, I). Let v,; be

given, with (08) e Q. In order that condition (Q) above be satisfied with S - S(t),

we must have t(<,8) < t c  where wTS(t c)w - 0, i.e., W I tc + (2 - t c)w 2w2 - 0 or

t c2C t --tan tan -T(6,6). Thus t I 2T
2 -t c 1+T

c

Simply take t(8,6) - t(T) as any C" function of T on the interval (0,-) such that

t(T) < t c  and t(T) - I for T sufficiently large. Other patches off the main diagonal

are treated similarly, so a smooth t(8,8) may be defined an required. This concludes the

proof of Proposition 2.3.
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